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Abstract: In this paper, a summary of the composite models developed for use in actuarial 
practice is presented. We refer in extensive detail to the first composite model introduced in 2005 
by Cooray and Ananda [3] which was then generalized by Scollnik [11] in 2007. The main 
features identified for these models were the density function, the cumulative distribution function, 
and the n-th order initial moment. We also look into some different variations of these composite 
models such as: Gamma - Pareto, Weibull - Pareto and Exponential - Pareto models.  
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1. INTRODUCTION 
 
The modeling of claims data is a major challenge in the construction of applications in 

general insurance [2]. Insurance companies recorded in time losses that emerge from a 
combination of moderate and large claims [5]. The modeling of big losses is done in 
practice with the Pareto distribution. On the other hand, when losses consist of smaller 
values with high frequencies and larger losses with low frequencies [5], we use the 
lognormal distribution or Weibull distribution. However in [5], it is underlined that Pareto 
fits well the tail, but on the other hand, lognormal and Weibull distributions produce an 
overall good fit but fit badly the tail. Several works have introduced composite models for 
insurance loss data modeling [1, 6]. Cooray and Ananda [3] in 2005 were the first to open 
the way for research into composite models using a longnormal distribution to a certain 
threshold and then the Pareto distribution. Then in 2007 Scollnik [11] generalized the 
model proposed by Cooray and Ananda proposing two other composite models. 

Insurance companies use data on the payment of positive claims. Their distribution 
often has a high upper tail [3]. Therefore, in the literature, an usual choise is the 
lognormal distribution or Pareto distribution to model such a data set (see FIG. 1.) [3]. In 
order to better capture the situations encountered in practice in one model, Cooray and 
Ananda introduces a composite model that uses lognormal density to a certain threshold 
and then Pareto density (FIG. 1.). Scollnik (2007) generalizes the proposed composite 
model [3] and introduces two new composite models (FIG. 2). All these models will be 
detailed in the next section. 

The second section of this article is dedicated to the presentation of the two types of 
composite models, Cooray and Ananda [3] and Scollnik respectively [11]. For these 
models, the main features are mentioned: the density function, the cumulative distribution 
function and the n-th order initial moments. It is also presented the drawback of the model 
proposed by Cooray and Ananda, drawback emphasized by Scollnik in [11]. 
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FIG 1. The composite lognormal-Pareto, Cooray and Ananda, model (𝜃𝜃 = 50,𝛼𝛼 = 0.5) [3] 

 

 
FIG 2. The composite lognormal-Pareto, Scollnik, model (𝜃𝜃 = 50,𝛼𝛼 = 0.5) [11] 

 

 
In the third section we present the main features of the following particular composite 

models: Gamma - Pareto, Weibull - Pareto, Exponential - Pareto models. Also, in section 
four we present a method for the parameter estimation. 

 
2. FIRST COMPOSITE MODELS 

 
2.1. Cooray and Ananda’s model 
The first lognormal-Pareto composite was developed by Cooray and Ananda (2005) 

[3] to model insurance payments. Cooray and Ananda construct the composite model 
considering a random variable X with probability density function:  

 

𝑓𝑓(𝑥𝑥) = � 𝑐𝑐𝑓𝑓1(𝑥𝑥),   0 < 𝑥𝑥 ≤ 𝜃𝜃,
𝑐𝑐𝑓𝑓2(𝑥𝑥),   𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.1) 

 
where f1(x) and f2(x) are the lognormal and, respectively, Pareto probability density 
functions given in (2.2) and (2.3), and c is a normalizing constant.   
                     

𝑓𝑓1(𝑥𝑥) =
(2𝜋𝜋)−1 2⁄

𝑥𝑥𝑥𝑥
exp�−

1
2
�

ln 𝑥𝑥 − 𝜇𝜇
𝜎𝜎

�
2

� ,   𝑥𝑥 > 0 (2.2) 
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𝑓𝑓2(𝑥𝑥) =
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 , 𝑥𝑥 > 𝜃𝜃 (2.3) 

 
where 𝜃𝜃, 𝜇𝜇,𝜎𝜎,𝛼𝛼  are unknown parameters with the conditions: 𝜃𝜃 > 0,𝜎𝜎 > 0,𝛼𝛼 > 0 and 
𝜇𝜇 ∈ 𝑅𝑅. 

Imposing the conditions of continuity and differentiability at 𝜃𝜃: 
 

𝑓𝑓(𝜃𝜃 − 0) = 𝑓𝑓(𝜃𝜃 + 0) and 𝑓𝑓′(𝜃𝜃 − 0) = 𝑓𝑓′(𝜃𝜃 + 0),          
(2.4) 

 
they rewritten (2.1) in the form:   
                                    

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝛼𝛼𝜃𝜃𝛼𝛼

�1 + 𝛷𝛷(𝑘𝑘)�𝑥𝑥𝛼𝛼+1 exp �−
𝛼𝛼2

2𝑘𝑘2 𝑙𝑙𝑙𝑙
2 �
𝑥𝑥
𝜃𝜃
�� , 0 < 𝑥𝑥 ≤ 𝜃𝜃,

𝛼𝛼𝜃𝜃𝛼𝛼

�1 + 𝛷𝛷(𝑘𝑘)�𝑥𝑥𝛼𝛼+1 ,                                            𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.5) 

 
where Φ (.) is the cumulative distribution function of the standard normal distribution. 
Also the value of the constant k is given by the positive solution of the equation 
exp(−𝑘𝑘2) = 2𝜋𝜋𝑘𝑘2. Thus the numerical value obtained for the constant k can be 
approximated by 0.372238898. Cooray and Ananda (2005) [3]  also noticed that 𝛼𝛼𝛼𝛼 = 𝑘𝑘 
and 𝑐𝑐 = 1 �1 + 𝛷𝛷(𝑘𝑘)�⁄ . The conditions imposed in (4) ensure that they have a smooth 
probability density function. They also reduce the unknown parameters from four to two, 
𝜃𝜃 > 0 and 𝛼𝛼 > 0. 

In [3] it is shown that the cumulative distribution function of the composite model                          
is: 

 

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 1
�1 + 𝛷𝛷(𝑘𝑘)�

𝛷𝛷�(𝛼𝛼 𝑘𝑘⁄ ) ln(𝑥𝑥 𝜃𝜃⁄ ) + 𝑘𝑘�, 0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 −
1

�1 + 𝛷𝛷(𝑘𝑘)�
(𝜃𝜃 𝑥𝑥⁄ )𝛼𝛼 ,                 𝜃𝜃 < 𝑥𝑥 < ∞,

�        
(2.6) 

 
For the composite lognormal-Pareto model (2.1), Cooray and Ananda show that the n-

th moment is given by: 
 

𝐸𝐸(𝑋𝑋𝑛𝑛) =
𝜃𝜃𝑛𝑛

1 + 𝛷𝛷(𝑘𝑘) �𝛷𝛷
(𝑘𝑘 − 𝑘𝑘𝑘𝑘 𝛼𝛼⁄ ) exp �

1
2
�
𝑘𝑘
𝛼𝛼
�

2

(𝑛𝑛2 − 2𝛼𝛼𝛼𝛼)� +
𝛼𝛼

𝛼𝛼 − 𝑛𝑛
� , 𝑛𝑛

< 𝛼𝛼 

      
(2.7) 

 
Cooray and Ananda [3] show that their proposed model can be applied by actuaries 

who encounter smaller data with higher frequencies as well as occasionally larger data 
with lower frequencies. Scollnik in [11] analyzes the model proposed by Corray and 
Ananda [3] and identifies a significant disadvantage. 

Scollnik shows that the model proposed in [3] can be written: 
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𝑓𝑓(𝑥𝑥) = � 𝜓𝜓
1

𝛷𝛷(𝑘𝑘)𝑓𝑓1(𝑥𝑥), 0 < 𝑥𝑥 ≤ 𝜃𝜃,

(1 − 𝜓𝜓)𝑓𝑓2(𝑥𝑥), 𝜃𝜃 < 𝑥𝑥 < ∞,
�      

(2.8) 

 
where 𝜃𝜃 > 0,𝛼𝛼 > 0 and f1(x), f2(x) are the probability density functions given in (2.2) and 
(2.3). Also, 𝛷𝛷(𝑘𝑘) = 𝛷𝛷([ln(𝜃𝜃) − 𝜇𝜇]/𝜎𝜎). It results that: 
 

𝜓𝜓 = 𝛷𝛷(𝑘𝑘)
1+𝛷𝛷(𝑘𝑘) ≈ 0.39215  and 1 − 𝜓𝜓 = 1

1+𝛷𝛷(𝑘𝑘) ≈ 0.60785   (2.9) 
 
In [11] it is shown that the composite model proposed by Cooray and Ananda with 

fixed and a priori known mixing weights ψ and 1- ψ  is restrictive. The theoretical model 
can be applied to any data set, but in order to obtain an optimal prediction, it is necessary 
to analyze in advance the set of data from practical activities. 

 
2.2. Scollnik’s models 
2.2.1. The first composite Scollnik model 
Scollnik [11] tried to eliminate the shortcomings of the Cooray and Ananda model by 

proposing a composite model like a longnormal truncated and Pareto. Thus, he  rewroted 
the probability density function given in (2.1) in the form: 

                                                                   

𝑓𝑓(𝑥𝑥) = � 𝑟𝑟𝑓𝑓1
∗(𝑥𝑥),                    0 < 𝑥𝑥 ≤ 𝜃𝜃,

(1 − 𝑟𝑟)𝑓𝑓2
∗(𝑥𝑥), 𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.10) 

 
where 0 ≤ 𝑟𝑟 ≤ 1, 𝑓𝑓1

∗(𝑥𝑥) and  𝑓𝑓2
∗(𝑥𝑥) represents the truncation of the density function 

𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥), respectively. Also 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥) are given by (2.2) and (2.3). So we 
get:  
       

⎩
⎪
⎨

⎪
⎧ 𝑓𝑓1

∗(𝑥𝑥) =
𝑓𝑓1(𝑥𝑥)
𝐹𝐹1(𝜃𝜃) ,    0 < 𝑥𝑥 ≤ 𝜃𝜃,

𝑓𝑓2
∗(𝑥𝑥) =

𝑓𝑓2(𝑥𝑥)
1 − 𝐹𝐹2(𝑥𝑥) ,𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.11) 

 
A first observation regarding the composite model proposed by Scollnik is that the 

value of r is not constant like the value of c in the model proposed by Cooray and 
Ananda. Here the value of r belongs to the closed interval [0,1] and is dependent on the 
particular values of 𝜃𝜃, 𝜇𝜇,𝜎𝜎 and 𝛼𝛼.  

In [17], using the continuity of function (2.10) at 𝜃𝜃, is obtained:         
          

𝑓𝑓(𝜃𝜃 − 0) = 𝑓𝑓(𝜃𝜃 + 0) ⇒ 𝑟𝑟 =
𝑓𝑓2(𝜃𝜃)𝐹𝐹1(𝜃𝜃)

𝑓𝑓2(𝜃𝜃)𝐹𝐹1(𝜃𝜃) + 𝑓𝑓1(𝜃𝜃)�1 − 𝐹𝐹2(𝜃𝜃)�
, (2.12) 

 
while from the condition of differentiability in 𝜃𝜃 is obtained:     
       

𝑓𝑓′(𝜃𝜃 − 0) = 𝑓𝑓′(𝜃𝜃 + 0) ⇒ 𝑟𝑟 =
𝑓𝑓2
′(𝜃𝜃)𝐹𝐹1(𝜃𝜃)

𝑓𝑓2′(𝜃𝜃)𝐹𝐹1(𝜃𝜃) + 𝑓𝑓1′(𝜃𝜃)�1 − 𝐹𝐹2(𝜃𝜃)�
 (2.13) 
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In [17] the expressions for the cumulative distribution function and for the n–th initial 
moment of the density function (2.10) are calculated. Thus is obtained: 

                   

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

𝐹𝐹1(𝑥𝑥)
𝐹𝐹1(𝜃𝜃) ,                                0 < 𝑥𝑥 ≤ 𝜃𝜃,

𝑟𝑟 + (1 − 𝑟𝑟)
𝐹𝐹2(𝑥𝑥) − 𝐹𝐹2(𝜃𝜃)

1 − 𝐹𝐹2(𝜃𝜃) ,   𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.14) 

 
and   
                                           

 𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟𝐸𝐸𝑛𝑛(𝑓𝑓1
∗) + (1 − 𝑟𝑟)𝐸𝐸𝑛𝑛(𝑓𝑓2

∗). (2.15) 
 
In [13], the advantages of this type of model are presented compared to the non-

truncated model. 
 
2.2.2. The second Scollnik model 
The second composite model proposed by Scollnik in [11] uses the truncated 

lognormal distribution for values less than the 𝜃𝜃 threshold value, and for values greater 
than the threshold value, uses the generalized Pareto distribution. Thus in [11] it uses the 
generalized version of Pareto distribution whose density function writes in the form:     

                                                          

 𝑓𝑓2(𝑥𝑥) =
𝛼𝛼(𝛼𝛼𝛼𝛼)𝛼𝛼

(𝛼𝛼𝛼𝛼 − 𝜃𝜃 + 𝑥𝑥)𝛼𝛼+1 , 𝑥𝑥 > 𝜃𝜃, (2.16) 

 
where 𝜃𝜃 > 0,𝛼𝛼 > 0  and 𝛽𝛽 > 0. If we denote 𝛾𝛾 = 𝛼𝛼𝛼𝛼 − 𝜃𝜃 then the distribution function 
can be written:   
                                                         

 𝑓𝑓2(𝑥𝑥) =
𝛼𝛼(𝛾𝛾 + 𝜃𝜃)𝛼𝛼

(𝛾𝛾 + 𝑥𝑥)𝛼𝛼+1 , 𝑥𝑥 > 𝜃𝜃, (2.17) 

 
where 𝜃𝜃 > 0,𝛼𝛼 > 0  and 𝛾𝛾 > −𝜃𝜃. In conclusion, the new composite model has the 
density function given by the expression:  
                               

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

𝑓𝑓1(𝑥𝑥)
𝐹𝐹1(𝑥𝑥) ,                       0 < 𝑥𝑥 < 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼(𝛾𝛾 + 𝜃𝜃)𝛼𝛼

(𝛾𝛾 + 𝑥𝑥)𝛼𝛼+1 ,    𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.18) 

 
where 𝜃𝜃 > 0,𝛼𝛼 > 0, 𝛾𝛾 > −𝜃𝜃 and 𝑟𝑟 ∈ [0,1]. In [17], imposing the conditions of continuity 
and differentiability at the point 𝜃𝜃 the expressions for 𝛼𝛼 and r were calculated. That's how 
they got:      
      

𝛼𝛼 + 1 = −
(𝛾𝛾 + 𝜃𝜃)𝑓𝑓1

′(𝜃𝜃)
𝑓𝑓1(𝜃𝜃) , (2.19) 

and        

𝑟𝑟 =
𝛼𝛼𝑓𝑓1

′(𝜃𝜃)𝐹𝐹1(𝜃𝜃)
𝛼𝛼𝑓𝑓1′(𝜃𝜃)𝐹𝐹1(𝜃𝜃) − (𝛼𝛼 + 1)𝑓𝑓12(𝜃𝜃), (2.20) 
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Also, in [17], the cumulative distribution function is calculated for this composite 
model: 

                

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

𝐹𝐹1(𝑥𝑥)
𝐹𝐹1(𝜃𝜃) ,                         0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝛾𝛾 + 𝜃𝜃
𝛾𝛾 + 𝑥𝑥

�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,

� (2.21) 

 
and n-th order initial moment:   
       

𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟𝐸𝐸𝑛𝑛(𝑓𝑓1
∗) + (1 − 𝑟𝑟)𝛼𝛼��

𝑛𝑛
𝑘𝑘
�

(−𝛾𝛾)𝑛𝑛−𝑘𝑘(𝛾𝛾 + 𝜃𝜃)𝑘𝑘

𝛼𝛼 − 𝑘𝑘

𝑛𝑛

𝑘𝑘=0

, 𝛼𝛼 > 𝑛𝑛, (2.22) 

 
3. FURTHER COMPOSITE MODELS 

 
3.1. Composite Gamma – Pareto models 
3.1.1. The first composite Gamma - Pareto model  
In [17], the composite model Gamma - Type II Pareto is developed following the 

construction steps shown in (2.18). For the development of the composite model, we refer 
to the form of the Gamma function 𝛤𝛤(𝜈𝜈) = ∫ 𝑥𝑥𝜈𝜈−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑 ∞

0  and to                       𝛤𝛤(𝜈𝜈, 𝑡𝑡) =
∫ 𝑥𝑥𝜈𝜈−1𝑒𝑒−𝑥𝑥𝑑𝑑𝑑𝑑, 𝜈𝜈, 𝑡𝑡 > 0,𝑡𝑡

0  the incomplete Gamma function.  
Thus, in [17], the form of the density function for the composite model Gamma-Type 

II Pareto is given as:  
           

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

𝛽𝛽𝛿𝛿

𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) 𝑥𝑥
𝛿𝛿−1𝑒𝑒−𝛽𝛽𝛽𝛽 ,         0 < 𝑥𝑥 < 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼(𝛾𝛾 + 𝜃𝜃)𝛼𝛼

(𝛾𝛾 + 𝑥𝑥)𝛼𝛼+1 ,            𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.1) 

 
where 𝛽𝛽, 𝛿𝛿,𝛼𝛼,𝜃𝜃 > 0, 𝛾𝛾 > −𝜃𝜃  and 𝑟𝑟 ∈ [0,1]. Imposing the conditions of continuity and 
differentiability at the point 𝜃𝜃 we obtain:  
          

𝛼𝛼 + 1 =
(𝛾𝛾 + 𝜃𝜃)(𝛽𝛽𝛽𝛽 − 𝛿𝛿 + 1)

𝜃𝜃
, (3.2) 

and   

𝑟𝑟 =
𝛼𝛼(𝛽𝛽𝛽𝛽 − 𝛿𝛿 + 1)𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽)

𝛼𝛼(𝛽𝛽𝛽𝛽 − 𝛿𝛿 + 1)𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) + (𝛼𝛼 + 1)(𝛽𝛽𝛽𝛽)𝛿𝛿𝑒𝑒−𝛽𝛽𝛽𝛽
, (3.3) 

 
Using formula (2.21), in [17], is the form of the cumulative distribution function for 

this composite model: 
                             

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝑟𝑟

𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽)
𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) ,                         0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝛾𝛾 + 𝜃𝜃
𝛾𝛾 + 𝑥𝑥

�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.4) 
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and also using formula (2.22), the n-th order initial moment results as:   
 
 𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟 𝛤𝛤(𝑛𝑛+𝛿𝛿 ,𝛽𝛽𝛽𝛽 )

𝛽𝛽𝑛𝑛𝛤𝛤(𝛿𝛿 ,𝛽𝛽𝛽𝛽 ) + (1 − 𝑟𝑟)𝛼𝛼∑ �𝑛𝑛𝑘𝑘�
(−𝛾𝛾)𝑛𝑛−𝑘𝑘(𝛾𝛾+𝜃𝜃)𝑘𝑘

𝛼𝛼−𝑘𝑘
𝑛𝑛
𝑘𝑘=0 , 𝛼𝛼 > 𝑛𝑛, (3.5) 

 
In [17], it is underlined that if  𝛿𝛿 = 𝑛𝑛  is a positive integer, then the function value 

𝛤𝛤(𝑛𝑛, . ) can be written in recursive form:    
       

𝛤𝛤(𝑛𝑛 + 1, 𝑥𝑥) = 𝑛𝑛𝑛𝑛(𝑛𝑛, 𝑥𝑥) − 𝑥𝑥𝑛𝑛𝑒𝑒−𝑥𝑥 , 𝑛𝑛 ≥ 1, 𝑥𝑥 > 0, (3.6) 
 
with starting value 𝛤𝛤(1, 𝑥𝑥) = 1 − 𝑒𝑒−𝑥𝑥 ,𝑥𝑥 > 0. 

 
3.1.2. The second composite Gamma – Pareto model 
The composite Gamma – Pareto model, developed in [17], results from the composite  

Gamma – Type II Pareto model for 𝛾𝛾 = 0. From this we can obtain the form of the 
density function for the composite Gamma-Pareto model:    

                       

𝑓𝑓(𝑥𝑥) =

⎩
⎨

⎧𝑟𝑟
𝛽𝛽𝛿𝛿

𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) 𝑥𝑥
𝛿𝛿−1𝑒𝑒−𝛽𝛽𝛽𝛽 ,         0 < 𝑥𝑥 < 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 ,            𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.7) 

 
where  𝛼𝛼 > 0,𝛽𝛽 > 0, 𝛿𝛿 > 0, 𝜃𝜃 > 0 and 𝑟𝑟 ∈ [0,1]. The parameters 𝛼𝛼 and r were calculated 
by imposing the conditions of continuity and differentiability for density function (3.7):   
                                      
𝛼𝛼 = 𝛽𝛽𝛽𝛽 − 𝛿𝛿, (3.8) 
 
and   
                      

𝑟𝑟 =
(𝛽𝛽𝛽𝛽 − 𝛿𝛿)𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽)

(𝛽𝛽𝛽𝛽 − 𝛿𝛿)𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) + (𝛽𝛽𝛽𝛽)𝛿𝛿𝑒𝑒−𝛽𝛽𝛽𝛽
, (3.9) 

 
For the model presented in this paragraph, in [17], it is observed that after applying 

the conditions (3.8) and (3.9) the number of parameters can be reduced from five to three.     
If it is attempted to reduce the number of these parameters by using the second 

derivative, an impossible condition is reached, 𝛽𝛽𝜃𝜃2 = 0. 
The cumulative distribution function, shown in [17], is given by:    
         

𝐹𝐹(𝑥𝑥) =

⎩
⎨

⎧ 𝑟𝑟
𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽)
𝛤𝛤(𝛿𝛿,𝛽𝛽𝛽𝛽) ,                 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝜃𝜃
𝑥𝑥
�
𝛼𝛼

, 𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.10) 

  
and n-th order initial moment is:   
    

 𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟 𝛤𝛤(𝑛𝑛+𝛿𝛿 ,𝛽𝛽𝛽𝛽 )
𝛽𝛽𝑛𝑛𝛤𝛤(𝛿𝛿 ,𝛽𝛽𝛽𝛽 ) + (1 − 𝑟𝑟) 𝛼𝛼𝜃𝜃𝑛𝑛

𝛼𝛼−𝑛𝑛
, 𝛼𝛼 > 𝑛𝑛, (3.11) 
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3.2. Composite Weibull – Pareto models 
3.2.1. The first composite Weibull – Pareto model 
A first composite Weibull-Pareto model was developed by Ciumara (2006). This 

composite model is built based on the model presented by Cooray and Ananda in (2.1). In 
[10], a comparative study is made between the two composite distributions, longnormal - 
Pareto and Weibull - Pareto respectively. In comparison, the density functions, the 
cumulative distribution functions and the n-th order initial moment are discussed. Thus, in 
(1) they considered:     

     

𝑓𝑓1(𝑥𝑥) =
𝛽𝛽
𝛾𝛾𝛽𝛽

𝑥𝑥𝛽𝛽−1𝑒𝑒𝑒𝑒𝑒𝑒 �−�
𝑥𝑥
𝛾𝛾
�
𝛽𝛽
� , 𝑥𝑥 > 0, 𝛾𝛾 > 0,𝛽𝛽 > 1, (3.12) 

 
and   
          

𝑓𝑓2(𝑥𝑥) =
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 , 𝑥𝑥 > 𝜃𝜃, 𝜃𝜃 > 0,𝛼𝛼 > 0, (3.13) 

 
      Thus, in [10], the density function for Weibull-Pareto composite distribution is 
obtained:  

                 

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧(𝑡𝑡0 + 1)2

(𝑡𝑡0 + 2)
𝛽𝛽
𝑥𝑥
�
𝑥𝑥
𝜃𝜃
�
𝛽𝛽
𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝑡𝑡0 + 1) �

𝑥𝑥
𝜃𝜃
�
𝛽𝛽
� , 0 < 𝑥𝑥 ≤ 𝜃𝜃,

𝑡𝑡0(𝑡𝑡0 + 1)
𝑡𝑡0 + 2

𝛽𝛽
𝑥𝑥
�
𝜃𝜃
𝑥𝑥
�
𝛽𝛽𝑡𝑡0

,                                      𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.14) 

 
The value of the constant 𝑡𝑡0 was calculated by imposing the conditions of continuity 

and differentiability of the density function on (0,∞). This was approximated, in [10], by              
𝑡𝑡0 ≈ 0.34998. Also, the number of parameters is reduced from four to two. The other two 

parameters are expressed using the relationships 𝛼𝛼 = 𝛽𝛽𝑡𝑡0 and 𝛾𝛾 = 𝜃𝜃(𝑡𝑡0 + 1)
1
𝛽𝛽 . Thus, the 

constant c of the density function definition is, in [10], 𝑐𝑐 = 𝑡𝑡0+1
𝑡𝑡0+2

. 
The cumulative distribution function for the Weibull – Pareto composite model is 

given in [10]:    
     

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝑡𝑡0 + 1
𝑡𝑡0 + 2

�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−(𝑡𝑡0 + 1) �
𝑥𝑥
𝜃𝜃
�
𝛽𝛽
�� , 0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 −
𝑡𝑡0 + 1
𝑡𝑡0 + 2

�
𝜃𝜃
𝑥𝑥
�
𝛽𝛽𝑡𝑡0

,                                  𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.15) 

 
The n-th order initial moments are given in [10]:      
   

𝐸𝐸𝑛𝑛(𝑓𝑓) =
𝑡𝑡0 + 1
𝑡𝑡0 + 2

𝜃𝜃𝑛𝑛 �(𝑡𝑡0 + 1)−
𝑛𝑛
𝛽𝛽𝛤𝛤 �

𝑛𝑛
𝛽𝛽

+ 1, 𝑡𝑡0 + 1� +
𝛽𝛽𝑡𝑡0

𝛽𝛽𝑡𝑡0 − 𝑛𝑛
� (3.16) 

 
for 𝑛𝑛 < 𝛽𝛽𝑡𝑡0.  
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3.2.2. The second composite Weibull – Pareto model 
The second composite Weibull-Pareto model is the one developed in [14] and [17]. It 

is a model built on the composite model described in (18). Thus, 𝑓𝑓1 represents the Weibull 
density function, and 𝑓𝑓2 represents the Type II Pareto density function.  

Under these conditions, the Weibull - Type II Pareto composite model has the density 
function given by:  

                       

𝑓𝑓(𝑥𝑥) =

⎩
⎨

⎧ 𝑟𝑟
1

1 − 𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
𝛽𝛽
𝜏𝜏𝛽𝛽
𝑥𝑥𝛽𝛽−1𝑒𝑒−(𝑥𝑥 𝜏𝜏⁄ )𝛽𝛽 ,       0 < 𝑥𝑥 < 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼(𝛾𝛾 + 𝜃𝜃)𝛼𝛼

(𝛾𝛾 + 𝑥𝑥)𝛼𝛼+1 ,                             𝜃𝜃 < 𝑥𝑥 < ∞,
� (3.17) 

 
where the parameters 𝛽𝛽, 𝜏𝜏,𝛼𝛼,𝜃𝜃 > 0, 𝛾𝛾 > −𝜃𝜃 and 𝑟𝑟 ∈ [0,1]. Imposing the conditions of 
continuity and differentiability on (0,∞), in [17], it is shown that: 
 

𝛼𝛼 + 1 =
𝛾𝛾 + 𝜃𝜃
𝜃𝜃

�𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 𝛽𝛽 + 1�, 
    

(3.18) 
 
and     
       

𝑟𝑟 =
𝛼𝛼�𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 𝛽𝛽 + 1� �𝑒𝑒(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 1�

𝛼𝛼[𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 𝛽𝛽 + 1]�𝑒𝑒(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 1� + (𝛼𝛼 + 1)𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
, (3.19) 

 
Thus, the number of unknown parameters has been reduced from six to four. Also, in 

[17], it is shown that if it is still desired to reduce the number of unknown parameters the 
condition obtained is:  

                            

𝑟𝑟𝑟𝑟(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
(𝛽𝛽 − 1)(𝛽𝛽 − 2) − 3𝛽𝛽(𝛽𝛽 − 1)(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 + 𝛽𝛽2(𝜃𝜃 𝜏𝜏⁄ )2𝛽𝛽

𝜃𝜃3�𝑒𝑒(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 1�
= 

= (1 − 𝑟𝑟)𝛼𝛼(𝛼𝛼 + 1)(𝛼𝛼 + 2)
1

(𝛾𝛾 + 𝜃𝜃)3, 
(3.20) 

 

where 𝛾𝛾 = 𝛽𝛽2𝜃𝜃𝛽𝛽+1

(1−𝛽𝛽)�𝜏𝜏𝛽𝛽+𝛽𝛽𝜃𝜃𝛽𝛽 �
. 

      The cumulative distribution function for the Weibull-Type II Pareto composite model 
in [17] is: 

                

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝑟𝑟

1 − 𝑒𝑒−(𝑥𝑥 𝜏𝜏⁄ )𝛽𝛽

1 − 𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
,                0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝛾𝛾 + 𝜃𝜃
𝛾𝛾 + 𝑥𝑥

�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.21) 

 
Here it was used that 𝐹𝐹1(𝑥𝑥) = 1 − 𝑒𝑒−(𝑥𝑥 𝜏𝜏⁄ )𝛽𝛽 . 
      For the composite Weibull - Type II Pareto the n-th order initial moment is given in 
[17]:  
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𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟
𝜏𝜏𝑛𝑛

1 − 𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
𝛤𝛤 �

𝑛𝑛
𝛽𝛽

+ 1, (𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽�

+ (1 − 𝑟𝑟)𝛼𝛼��
𝑛𝑛
𝑘𝑘
�

(−𝛾𝛾)𝑛𝑛−𝑘𝑘(𝛾𝛾 + 𝜃𝜃)𝑘𝑘

𝛼𝛼 − 𝑘𝑘

𝑛𝑛

𝑘𝑘=0

, 𝛼𝛼 > 𝑛𝑛, 
(3.22) 

 
3.2.3. The third composite Weibull – Pareto model 
The third composite Weibull - Pareto model, developed in [17], represents a particular 

case of the composite Weibull - Type II Pareto model, for 𝛾𝛾 = 0. This gives the density 
function for the composite Weibull-Pareto model:   

                

𝑓𝑓(𝑥𝑥) =

⎩
⎨

⎧𝑟𝑟
1

1 − 𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
𝛽𝛽
𝜏𝜏𝛽𝛽
𝑥𝑥𝛽𝛽−1𝑒𝑒−(𝑥𝑥 𝜏𝜏⁄ )𝛽𝛽 ,   0 < 𝑥𝑥 < 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 ,                             𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.23) 

 
where  𝛼𝛼,𝛽𝛽, 𝜏𝜏,𝜃𝜃 > 0 and 𝑟𝑟 ∈ [0,1]. After applying the conditions of continuity and 
differentiability of the density function (3.23), it is obtained in [17]:  
       
𝛼𝛼 = 𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 𝛽𝛽 + 1, (3.24) 
 
and          
 

𝑟𝑟 =
𝛼𝛼 �𝑒𝑒(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 1�

𝛼𝛼�𝑒𝑒(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽 − 1� + 𝛽𝛽(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
, (3.25) 

 
And this time, due to the application of conditions (3.26) and (3.27), the reduction of 

unknown parameters is from five to three. In [17], the observation is made that if it is 
attempted to reduce the number of unknown parameters to two it follows that    𝛽𝛽2𝜃𝜃𝛽𝛽+1 =
0, which leads to 𝛽𝛽 = 0, which is impossible, or 𝜃𝜃 = 0 in which case the proposed model 
turns into the classic Pareto. 

Also, in [17], we get the expressions for the cumulative distribution function: 
        

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧𝑟𝑟

1 − 𝑒𝑒−(𝑥𝑥 𝜏𝜏⁄ )𝛽𝛽

1 − 𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
,         0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝜃𝜃
𝑥𝑥
�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.26) 

and n-th order initial moment for the composit Weibull – Pareto model: 
      𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟 𝜏𝜏𝑛𝑛

1−𝑒𝑒−(𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽
𝛤𝛤 �𝑛𝑛

𝛽𝛽
+ 1, (𝜃𝜃 𝜏𝜏⁄ )𝛽𝛽� + (1 − 𝑟𝑟) 𝛼𝛼𝜃𝜃𝑛𝑛

𝛼𝛼−𝑛𝑛
, 𝛼𝛼 > 𝑛𝑛, (3.27) 

 
3.3. Composite Exponential – Pareto models 
3.3.1. The first composite Exponential – Pareto model 
The composite exponential - Pareto model was developed in [16] according to the 

model described in [3]. Thus, in the model constructed in (2.1), 𝑓𝑓1 is considered to be the 
exponential density and 𝑓𝑓2 the Pareto density. In conclusion, in [16], it is considered:  
𝑓𝑓1(𝑥𝑥) = 𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 , 𝑥𝑥 > 0, (3.28) 
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𝑓𝑓2(𝑥𝑥) =
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 , 𝑥𝑥 > 𝜃𝜃, (3.29) 

 
where 𝜆𝜆 > 0, 𝛼𝛼 > 0, 𝜃𝜃 > 0 are unknown parameters. 

Following the application of the constraints of continuity and differentiability of the 
density function it is obtained in [16]:    

                                   

�
𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆 =

𝛼𝛼
𝜃𝜃

,

𝜆𝜆2𝑒𝑒−𝜆𝜆𝜆𝜆 =
𝛼𝛼(𝛼𝛼 + 1)

𝜃𝜃2 ,
� (3.30) 

 
The authors get: 

 
�𝜆𝜆𝜆𝜆 = 1.35
𝛼𝛼 = 0.35

� (3.31) 
 
After the restriction system was resolved, it was possible to reduce the unknown 

parameters from three to one. Also, imposing the condition ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
0 = 1 the 

normalization constant is obtained:   
                   

𝑐𝑐 = 1
2−𝑒𝑒−𝜆𝜆𝜆𝜆

= 0.574, (3.32) 
 
The density function for the composite Exponential - Pareto model can be written as:   

       

𝑓𝑓(𝑥𝑥) =

⎩
⎨

⎧
0.775
𝜃𝜃

𝑒𝑒−
1.35𝑥𝑥
𝜃𝜃 , 0 < 𝑥𝑥 ≤ 𝜃𝜃,

0.2
𝜃𝜃0.35

𝑥𝑥1.35 ,              𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.33) 

 
And the cumulative distribution function, in [16], is given as:   

    

𝐹𝐹(𝑥𝑥) =

⎩
⎨

⎧0.574 �1 − 𝑒𝑒−
1.35𝑥𝑥
𝜃𝜃 � , 0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − 0.574 �
𝜃𝜃
𝑥𝑥
�

0.35

,𝜃𝜃 < 𝑥𝑥 < ∞,
 � (3.34) 

 
3.3.2. The second composite Exponential – Pareto model 
The second composite Exponential – Pareto model, developed in [15], is built on the 

model (2.18). A generalized Pareto distribution is used, in [15],  above the threshold 𝜃𝜃. 
Thus, the second Exponential – Pareto composite model has the density function:  

       

𝑓𝑓(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
,                0 < 𝑥𝑥 ≤ 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼(𝛾𝛾 + 𝜃𝜃)𝛼𝛼

(𝛾𝛾 + 𝑥𝑥)𝛼𝛼+1 ,𝜃𝜃 < 𝑥𝑥 < ∞,
� (3.35) 
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where the parameters 𝜆𝜆,𝛼𝛼,𝜃𝜃 > 0, 𝛾𝛾 > −𝜃𝜃  and 𝑟𝑟 ∈ [0,1]. In [15], applying the conditions 
of continuity and differentiability on (0,∞), the following conditions are obtained:     
 
𝛼𝛼 + 1 = 𝜆𝜆(𝛾𝛾 + 𝜃𝜃), (3.36) 
 
and    
     

𝑟𝑟 =
𝛼𝛼�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 �
𝛼𝛼 + 𝑒𝑒−𝜆𝜆𝜆𝜆

, (3.37) 

 
It is noted that following the application of the two conditions, continuity and 

differentiability, the number of unknown parameters decreased from five to three. In [15] 
trying to reduce the number of unknown parameters using a second derivative 
requirement yields:   

     
𝑟𝑟

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
𝜆𝜆3𝑒𝑒−𝜆𝜆𝜆𝜆 = (1 − 𝑟𝑟)𝛼𝛼(𝛼𝛼 + 1)(𝛼𝛼 + 2)

1
(𝛾𝛾 + 𝜃𝜃)3, (3.38) 

 
and using (3.36) and (3.37) the authors conclude 𝛼𝛼 + 1 = 𝛼𝛼 + 2 ⇔ 0 = 1, which is 
impossible. 
      The cumulative distribution function for the composite Exponential - Type II Pareto 
model is:       

            

𝐹𝐹(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
, 0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝛾𝛾 + 𝜃𝜃
𝛾𝛾 + 𝑥𝑥

�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,
 � (3.39) 

 
and the n-th order moment of the composite Exponential – Type II Pareto is given by, in 
[15]:  
             

𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟
Γ(𝑛𝑛 + 1, 𝜆𝜆𝜆𝜆)
𝜆𝜆𝑛𝑛(1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 ) + (1 − 𝑟𝑟)𝛼𝛼��

𝑛𝑛
𝑘𝑘
�

(−𝛾𝛾)𝑛𝑛−𝑘𝑘(𝛾𝛾 + 𝜃𝜃)𝑘𝑘

𝛼𝛼 − 𝑘𝑘
,𝛼𝛼 > 𝑛𝑛,

𝑛𝑛

𝑘𝑘=0

 (3.40) 

 
where Γ is the incomplete gamma function. 

 
3.3.3. The third composite Exponential – Pareto model 
The third Exponential - Pareto composite model, developed in [15], is designed 

according to the model (2.18). It's a composite Exponential-Pareto model define as a 
truncated Exponential and Pareto mixture with threshold value 𝜃𝜃 [15]. In other words, this 
model is a particular case obtained by taking, 𝛾𝛾 = 0, of the composite model presented in 
the previous section. 

The third composite Exponential – Pareto model has the density function:  
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𝑓𝑓(𝑥𝑥) =

⎩
⎨

⎧𝑟𝑟
𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
,                0 < 𝑥𝑥 ≤ 𝜃𝜃,

(1 − 𝑟𝑟)
𝛼𝛼𝜃𝜃𝛼𝛼

𝑥𝑥𝛼𝛼+1 , 𝜃𝜃 < 𝑥𝑥 < ∞,

� (3.41) 

 
where 𝜆𝜆 > 0,𝛼𝛼 > 0,𝜃𝜃 > 0 and 𝑟𝑟 ∈ [0,1]. Also, by imposing the conditions of continuity 
and differentiability on (0,∞) to the density function (3.41), one obtains as in [15]: 
       
𝛼𝛼 + 1 = 𝜆𝜆𝜆𝜆, (3.42) 
 
and         
 

𝑟𝑟 =
𝛼𝛼�1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 �
𝛼𝛼 + 𝑒𝑒−𝜆𝜆𝜆𝜆

=
𝛼𝛼�1 − 𝑒𝑒−(𝛼𝛼+1)�
𝛼𝛼 + 𝑒𝑒−(𝛼𝛼+1) , (3.43) 

 
In [15], it is shown that because of conditions (3.42) and (3.43) the number of 

unknown parameters is reduced from four to two. If it is still desired to reduce the number 
of unknown parameters one can use the second order derivative. This leads to:  

        
𝑟𝑟

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
𝜆𝜆3𝑒𝑒−𝜆𝜆𝜆𝜆 = (1 − 𝑟𝑟)𝛼𝛼(𝛼𝛼 + 1)(𝛼𝛼 + 2)

1
𝜃𝜃3 (3.44) 

 
But if in relation (3.44) we use relations (3.42) and (3.43) we are led to 𝛼𝛼 + 1 = 𝛼𝛼 +

2 ⇔ 0 = 1, which is impossible. 
      The cumulative distribution function for the third composite Exponential - Pareto is 
given in [15]:    

      

𝐹𝐹(𝑥𝑥) =

⎩
⎨

⎧ 𝑟𝑟
1 − 𝑒𝑒−𝜆𝜆𝜆𝜆

1 − 𝑒𝑒−𝜆𝜆𝜆𝜆
,            0 < 𝑥𝑥 ≤ 𝜃𝜃,

1 − (1 − 𝑟𝑟) �
𝜃𝜃
𝑥𝑥
�
𝛼𝛼

,𝜃𝜃 < 𝑥𝑥 < ∞,
 � (3.45) 

 
And the initial n-th order moments are:     
  

𝐸𝐸𝑛𝑛(𝑓𝑓) = 𝑟𝑟
Γ(𝑛𝑛 + 1, 𝜆𝜆𝜆𝜆)
𝜆𝜆𝑛𝑛(1 − 𝑒𝑒−𝜆𝜆𝜆𝜆 ) + (1 − 𝑟𝑟)

𝛼𝛼𝜃𝜃𝑛𝑛

𝛼𝛼 − 𝑛𝑛
,𝛼𝛼 > 𝑛𝑛, (3.46) 

 
where Γ is the incomplete gamma function. 

 
4. PARAMETER ESTIMATION 

 
An important aspect is the necessity of estimating the unknown parameter 𝜃𝜃. Many 

studies [7,8] use on the maximum likelihood method as the method of estimating 
parameter. Thus, consider the case of the composite model proposed by Scollnik (2007) 
whose density function is given by (2.18), with the real parameters 𝛿𝛿1,𝛿𝛿2, 𝛿𝛿3, … , 𝛿𝛿𝑠𝑠,𝜃𝜃, with 
𝑠𝑠 ∈ 𝑁𝑁 and          𝑥𝑥1 ≤ 𝑥𝑥2 ≤ 𝑥𝑥3 ≤ ⋯ ≤ 𝑥𝑥𝑛𝑛  an ordered sample of data from the composite 
(2.18). In [16], it is specified that if the likelihood function is to be evaluated, it is 
necessary to know where the unknown parameter 𝜃𝜃 is placed in relation to that sample. 
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Assuming that the unknown parameter 𝜃𝜃 is placed  𝑥𝑥𝑚𝑚 ≤ 𝜃𝜃 ≤ 𝑥𝑥𝑚𝑚+1 , then the likelihood 
function is given in [17]: 

 

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 , 𝛿𝛿1, … 𝛿𝛿𝑛𝑛 ,𝜃𝜃) = �𝑓𝑓(𝑥𝑥𝑖𝑖) = �𝑟𝑟𝑓𝑓1
∗(𝑥𝑥𝑖𝑖) � (1 − 𝑟𝑟)𝑓𝑓2

∗�𝑥𝑥𝑗𝑗 �
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

= 𝑟𝑟𝑚𝑚 (1 − 𝑟𝑟)𝑛𝑛−𝑚𝑚 �𝑓𝑓1
∗(𝑥𝑥𝑖𝑖) � 𝑓𝑓2

∗�𝑥𝑥𝑗𝑗 �.
𝑛𝑛

𝑖𝑖=𝑚𝑚+1

𝑚𝑚

𝑖𝑖=1

 
(4.1) 

 
      Since the proposed method depends on m, which is not known exactly, in [17] the 
following algorithm is proposed: 
      Step 1. For each 𝑚𝑚 = 1,2,3, … ,𝑛𝑛 − 1, evaluate 𝛿𝛿1,� … , 𝛿𝛿𝑠𝑠� ,𝜃𝜃� as solutions of the system: 

 

⎩
⎨

⎧
𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝛿𝛿𝑖𝑖

= 0,      𝑖𝑖 = 1,2,3, … , 𝑠𝑠,

𝜕𝜕 ln 𝐿𝐿
𝜕𝜕𝜕𝜕

= 0                                 

� (4.2) 

 
If 𝜃𝜃� is located between 𝑥𝑥𝑚𝑚 ≤ 𝜃𝜃� ≤ 𝑥𝑥𝑚𝑚+1 then 𝜃𝜃� is the maximul likelihood estimator. If 

not, go to step 2 
Step 2. If the system (4.2) has no solution then we are in one of two situations 𝑚𝑚 = 𝑛𝑛 

or 𝑚𝑚 = 0. In this case, in [17] it is recommended to use one of the functions 𝑓𝑓1 or 𝑓𝑓2 for 
the likelihood function. 

Unknown parameter estimation using this method can be implemented on a 
computing platform as shown in [12]. This may lead to reduced work-time in terms of 
system solving (4.1). 

 
CONCLUSIONS 

 
In this paper we presented a summary of the characteristics of the main composite 

models used in the processing of statistical data in actuarial. We begin the work with the 
basic composite models, Cooray and Ananda (2005) and Scollnik (2007), and then 
introduce the particular Gamma-Pareto, Weibull-Pareto and Exponential-Pareto models. 
Depending on the distribution of the data to be processed, one or other of the models 
presented may be applied. 

There are other composite models studied in the literature like, e.g.: composite 
truncation models [13], composite lognormal – Burr [1], composite Stoppa models [2], 
inverse Weibull composite models [4], composite lognormal – Pareto model with random 
threshold [9].  
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