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Abstract: This paper presents some aspects regarding the gas-dynamic model of the 

detonation wave starting from the basic equations of mass, momentum and energy. The 
combustion wave speed was obtained from given initial conditions and the graphics were made 

for different values of energy released in the combustion process.  The existence of a solution to 

the steady conservation laws depended on the compatibility of the solution with the dynamics of 
the combustion behind the wave.  
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1. INTRODUCTION 

 

As a result of the energy release, in a combustion process can appear two types of 

self-propagating waves: deflagration and detonation. Deflagration waves propagate at 

subsonic velocities and depend not only on the initial state of the combustion mixture but 

also, on the boundary conditions behind the waves. Being a diffusion wave, deflagration 

has a velocity, proportional to the square root of the reaction rate and in stationary 

conditions it is defined as a flame. A detonation wave has a supersonic velocity and it can 

be considered as a reacting shock wave where the reactants (which are situated ahead of 

it) are not disturbed prior to the arrival of the detonation, remaining at their initial state. 

The detonation front has a transient two-dimensional structure and the flow field 

generated by the ignition source is responsible for the detonation formation process. 

Behind a strong detonation wave the flow is subsonic and the wave penetrates the 

reaction zone attenuating the detonation, so, a freely propagating detonation has a sonic 

or supersonic condition behind it.  

The classical method of investigating the stability of a steady solution for self-

propagating detonation wave consists of imposing small propagating multidimensional 

perturbations on the solution and observe if the amplitude of the perturbations grows. 

This assumption (of small perturbations) permits the system of equations to be linearized 

and integrated in order to find the unstable modes. Another method is to start with the 

time-dependent nonlinear equations and then integrate numerically for given initial 

conditions in order to see if the solution is achieved asymptotically at large time [1]. 

Linear stability analyses are valid only for the initial growth of the perturbations and 

cannot describe results far from the stability limits. The most important parameters that 

govern the stability of a steady detonation structure are the activation energy, aE , the 

ratio of specific heats,  , the degree of overdrive, CJDD/  and the chemical heat release, 

Q. The detonation is unstable for high values of aE , because small temperature 

perturbations result in large fluctuations in the reaction rate.  
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The degree of overdrive, also influences the stability of the detonation because a high 

degree of overdrive increases the shock temperature, sT , having the effect of lowering the 

temperature sensitivity of the reaction because the exponential temperature dependence of 

the reaction rate depends on the ratio of activation energy and the shock temperature. 

Also, an increase in the heat of reaction, Q, renders the detonation more unstable, because 

the physical effects of the perturbations are enhanced for higher value of the heat of 

reaction. The possible variation of the leading shock pressure of the detonation wave as a 

function of time for increasing values of the activation energy is analyzed [2]. The shock 

pressure is normalized with respect to its value corresponding to the steady Chapman-

Jouguet detonation. For a low value of the activation energy, the shock front pressure is 

steady.   
 

2. BASIC EQUATIONS 

 

For a coordinate system fixed to the wave, the basic conservation equations of mass, 

momentum and energy for one dimensional steady flow across a combustion wave are 

given by: 
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where  , u, p, h and q are the density, velocity, pressure, the sensible enthalpy and q is 

the difference between the enthalpies of formation of reactants and the products. The 

subscripts 0 and 1 denote the reactant and product states and the sensible enthalpy of the 

mixture is given by 
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where pc is the specific heat of the mixture. 

The existence of a steady detonation front depends on the possibility of being able to 

match the conditions behind a steady detonation wave to the non-steady flow in the 

products of chemical reaction. Planar detonation can be matched to the non-steady 

expansion fan behind it, being compatible with the non-steady flow of detonation 

products.  

Starting from the caloric equation of state for the sensible enthalpy one can get the 

Rayleigh line and Hugoniot curve for the transition from state  1,1  to state  yx,  across 

the combustion wave. Defining the ratios of densities and pressures as 0110 // vvx    

and 01 / ppy   one can write the Rayleigh line  
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and Hugoniot curve 
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where vp cc /  is the ratio of specific heats. The Hugoniot curve can be expressed in 

another form, namely 
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From Rayleigh line equation we note that the velocity of the combustion wave is 

proportional to the square root of the slope of this line, 
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and also, the slope of the Hugoniot curve is  
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The variation of entropy along the Hugoniot curve, in a nondimensional form 

 Rss /  can be expressed as follows 
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Depending on whether the flow behind the combustion wave is supersonic or 

subsonic, the downstream boundary conditions may or may not have an influence on the 

wave propagation speed, namely, for a subsonic flow behind the wave the back boundary 

condition must be satisfied by the solution of the conservation laws across the wave, but 

if the wave speed is also subsonic, then perturbations can propagate upstream of the wave 

and the upstream conditions will be altered.  

According to the equation (9), if the value of x is in interval 

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expression 2
11 M  has the opposite sign to the entropy derivative along the Hugoniot 

curve. For a strong detonation, where   0/ Hugoniotdxsd , it follows that 11 M , that is, 

the downstream flow is subsonic relative to the combustion wave. When 

  0/ Hugoniotdxsd  then 11 M and the downstream flow is supersonic, so, strong 

detonation and weak deflagration depend on the downstream boundary condition, but for 

the weak detonations and strong deflagrations (where the flow is supersonic behind the 

wave), the propagation of the wave cannot be influenced by the downstream boundary 

conditions [3, 4]. 

Figure 1 shows the graphics of the Rayleigh line and Hugoniot curve. The shock 

Hugoniot curve  0q  passes through the initial state  1,1  and for finite values of q this 

curve lies above the shock Hugoniot curve and doesn’t intersect the initial state. The 

intersection of the line 1x  and 1y  with the Hugoniot curve give the solutions for 

constant volume and constant pressure combustion. For    1/1 11  x  or 

   1/1/ 1101    the denominator of the ratio (9) is zero and y , that 

means the line of equation    1/1 11  x  is an asymptotic line of the Hugoniot 

curve. The slope of the Rayleigh line can be expressed by 
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therefore   11 cu , that is the flow Mach number downstream of a Chapman-Jouguet 

detonation or deflagration, is equal to unity. 
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FIG. 1. The weak and strong detonation points 

 

 

3. THE TANGENCY RAYLEIGH LINE AND HUGONIOT CURVE 

COORDINATES 

 

For a constant chemical energy release and perfect gas assumptions it is possible to 

obtain the algebraic expressions relating the downstream state  1111 ,,, pTM  to the 

upstream state  0000 ,,, pTM  . 

For given initial and boundary conditions, the combustion wave speed can not be 

determined only from the system of conservation equations together with the equation of 

state, being necessary an additional relationship, which can be obtained from the 

Chapman-Jouguet criterion. In the point of tangency between Rayleigh line and Hugoniot 

curve (fig. 2) the detonation velocity is minimum and there are no solutions to the 

conservation equations for velocities less than this minimum value. Also, the sonic flow 

or minimum entropy requirement can provide a criterion for the conservation laws 

solution [5, 6].  
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FIG. 2. The tangency solutions 

 

Combining the equations (3) and (4) we get a quadratic equation for the specific 

volume ratio, 01 /vvx  , 
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(11) 

 

The discriminant of the above equation is 
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and the solutions 1x and 2x can be expressed as follow 

 






































1

1

10

2
0

01

2,11

0

2,12

1
2,1







 M

v

v
x  

(13) 

 

The positive sign corresponds to a weak detonation whereas the negative sign refers to 

a strong detonation. When the two roots coincide, we obtain the tangency solutions, 

which are the Chapman-Jouguet criterion. In the following picture are presented some 

curves for different Mach number 0M  values and for a detonable mixture corresponding 

to 4.10   and 2.11  . 

Figure 3 shows the Rayleigh lines and Hugoniot curves shapes for different values of 

Mach numbes 0M   and heat of reaction. Also, fig. 4 shows the discriminant function for 

the tangency points and the shape of solutions domain. 
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(a) (b) 

FIG. 3. The Rayleigh lines for different values of Mach number (a) and the Hugoniot curves for 
different values of reaction heat 

 

  
(a) (b) 

FIG. 4. The discriminant of equation for tangency point solutions (a) and the domain of all possible 

solutions (b) 

 

4.  CONCLUSIONS 

 

The basic theoretical aspects presented in this article permit the detonation velocity to 

be determined without boundary condition considerations for rear wave domain, even if 

their existence requires that a solution for the non-steady flow of the products match the 

steady boundary condition behind the Chapman-Jouguet criterion. For the planar case, the 

solution is continuous and the Rimann solution satisfies the sonic condition at the rear 

frontier of detonation, while for the cylindrical and spherical detonation there are 

singularities due to the infinite expansion gradient. The mathematical criterion for the 

sonic singularity becomes an important requirement for the choice of the correct solution 

from the conservation laws.  
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Detonation and deflagration can be analyzed using the conservation equations across 

the front wave and these do not require the mechanism for this transition, being necessary 

a model for the structure of the detonation wave, which specifies the physical and 

chemical processes for transforming the initial to final states. 
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